
N88-16418

Intelligent Man/Machine Tnto_faco_ on the S Dace 8tation

Rodney S. Daughtrey
Research &ssociate, Johnson Research Center

Research Institutew Room A-11

University of Alabama in Huntsville
Huntsville, AL 35899

(2o5)-895-6217

ABSTRACT

The computer systems that will be resident on the space

station will necessarily be large, complex configurations of

software and/or hardware which must function in concert to

maintain the operations of the mission. However, much of the

complexity should be transparent to the user of those systems,
allowing the user to concentrate as much as possible on the

purpose of his/her interaction with the computer, rather than

unnecessary detail.

This paper addresses some important topics in the

development of good, intelligent, usable man/machine

interfaces for the space station. These computer interfaces

should adhere strictly to three concepts or doctrines:

generality, simplicity, and elegance (just as the programming

language code below these interfaces should follow).

Generality refers to the commonality of usage and the

similarity of form and function that should predominate all

the interfaces, so that the user is provided with computer

working environments that appear and perform in much the same

way. Simplicity is obviously desirable, but not a concept to

be taken lightly. It is very important that the interfaces

simplify operations wherever possible (and desirable), and

make intelligent inferences about the intent of the user to

save time and unnecessary attention to detail. Finally, the

elegance of the interfaces should be of great concern. The
interfaces should be as concise as possible, exhibiting the

"principle of least astonishment".

The author will also discuss the motivation for natural

language interfaces and their use and value on the space station,
both now and in the future.

AI provides an extremely powerful tool with which to think

about and develop software applications to run on the space

station. But, without well-thought-out, intelligent, truly

usable man/machine interfaces to harness this asset, much of this

power will be lost.

_ECED|NG PAGE BLANK NOT FIL_'--D

321



INTRODUCTION: LEVELS OF COMMUNICATION AMONG HUMANS AND COMPUTERS

Communication is an interesting subject. Whether we

communicate with other humans, machines, or some other entity, we

do so to achieve some end. With computers, we attempt to get them

to do things for us, (usually) saving time and effort on our

part. It only makes sense, then, that getting them to do

something should be made to be as effortless and logical as

possible. How should we design them in order to maximize ease of

use? Should we make them like us?

Figure 1

communication

humans).

shows a comparison between human levels of

and machine levels of communication (as used by

USERINIER_A(E5
I_OILTON HIGHLEVEL
LRNSuAGEra

HIGI4 LEVELLAN_AGE(;

A_EMIILY LANGUAGE

MACHIdE LI_NGUA&_.
HflRD-'WIRIIIG

MACWINE LEVELS

O1: CoMMuNICATION

N_'TURAL L_NGuAGT:5 (E)4GLISH)

SYMBOLIC COMMuNiCRTIOt4

|

HUMAN LEVELS OF

CoMMuNICATIOlq

Fig. i. Comparison of human and machine communication levels

At the bottom of machine communication we have hard-wiring,

or direct communication with the physical parts making up the

computer. This was done with the ENIAC computer in the late

1940's. The important thing to realize here is that there is no

level of abstraction of input, and therefore no user interface,

between the human and machine at this level: the human operator

is responsible for explicitly determining the actual flow of

electricity through the machine. This may seem rather silly

today, but it was at one time the price one had to pay for

"automated" computing.

Machine language soon followed hard-wiring and abstracted

most of the physical aspects of programming a computer, thereby

becoming the first user interface. Then came assembly language,

which gave mnemonic names to machine language instructions and

provided a slightly more forgiving format for writing programs.

High-level languages such as FORTRAN and LISP appeared on the

scene next, making programming a much simpler and less tedious

task and allowing programmers to be more productive and to write

programs that were less machine dependent than those in the past.

322



Much of the software written today makes use of the more

friendly and intuitive input methods that have been developed for
today's computers (the mouse, user menus, icons, multiple windows

on the screen, etc.). This software often reaches a level of

communication that humans use in their everyday life, a level the

author calls "human symbolic communication". Programs are

beginning to interact with the user in the same way that a human

interacts with and responds to symbolic stimuli in the real world

(traffic lights, road signs, a telephone ringing), making the

programs easier to learn and use.

Finally, interfaces which communicate with the user in plain

English are currently under a great deal of study and

development. Some progress has been made, but many large,

difficult problems still remain. The importance and relevance of

natural language interfaces to the space station will be

discussed later in this paper.

ESSENTIAL ELEMENTS OF _ USER INTERFACE

Regardless of the type of interface (be it graphical,

natural language, or some other), three principles (in the

author's view) should predominate its form and function:

generality, simplicity, and elegance [2].

What was the author's motivation behind concentrating on
these three ideals? It stems from the fact that these ideals are

(usually) the three main goals to strive for when writing

computer programs. A programmer's ultimate objective should be

to write programs that are easy to understand, easy to modify,

and easy to use. Since these principles are also what a good

user interface should embody, the same philosophies should apply.

The principle of "generality" might better be termed the

principle of "non-specificity". All the user interfaces on the

space station (or as many as is feasible) should look, be used,

and perform in much the same way, even though they might perform
vastly different tasks. These interfaces should each be as non-

specific as possible, so that features, commands, and utilities

resident in one interface will most likely appear in all the

interfaces. This cannot always be the case, of course; some

features and commands in one interface may not even make sense in

another context. If possible, the similarity of features and

commands should extend both functionally and graphically across

interfaces; in other words, not only should features common to

more than one interface perform the same way, they should even
appear in the same form on the screen. The main idea behind

generality, of course, is that once a user becomes familiar with

one interface, he/she would be able to learn to use other

interfaces in much less time and with considerably less effort.

Incorporating simplicity into a user interface may seem

323



rather an obvious objective, but a fine line lies between keeping

things simple and lessening the functional power of the

interface. Einstein may have said it best: "Everyhing should be
made as simple as possible, but not simpler" [1]. At any rate, a

good rule to follow might be that wherever unnecessary detail can

be suppressed, it should be, but not at the functional expense of

the user. A simple example involves the user input of several

parameters for some computing task (a statistical program, say).
If the user needs to run the program more than once, he/she

definitely should have the program option of supplying the same

parameters as on the first execution. Not having this option

would violate the concept of simplicity; either the user would be

subjected to unnecessary detail (i.e. the program forces the user

to input all the parameters again), or the user would lose

functional power (the program only allows the same values to be

used again on subsequent executions).

Implementing elegance into an interface is a highly

subjective task. Elegance is really a combination of good taste

and common sense, and although it may mean different things to

different programmers, a few guidelines do exist.

Probably the main practice that should be followed is the

adherence to the "principle of least astonishment". For those

unfamiliar with this principle, it states that the programmer
should devote considerable attention to the naming of commands,

features, program options, etc. in order to make as obvious as

possible what operation or concept is meant by that name. Put

simply, "say what you mean". The idea is that the user should be

"least astonished" at what the command, feature, or program

option implies. Although this is stated tongue-in-cheek, anyone

who has worked with software in which the keystroke sequence
"CTRL-J CTRL-M ESCAPE R47" was needed to save a file, rather

than, say, "CTRL-S", can appreciate its importance.

WHAT SHOULD USER _NTERFAC_8 ON THE SPACE STATION BELIKE7

Are these graphical, symbolic user interfaces discussed

earlier the way to approach user interfaces on the space station?

Can we develop even higher level natural language interfaces

which can communicate with us in English and truly understand our

instructions and intentions? Assuming we can, when and under

what conditions should we develop them? To answer these

questions, we need to identify the motivations for both types of

interfaces and the advantages and disadvantages of each.

With graphic-oriented interfaces, speed of use and

conciseness of expression are definite advantages over natural

language interfaces. Users can accomplish tasks much faster

using input devices like the mouse, menus, windows, and other

similar features. Tasks that would have to be specified in

sentence form in a natural language interface could be effected

324



with a single mouse click or some keystroke.

Natural language interfaces, however, are not without their

advantages. With graphic-oriented interfaces, it is sometimes

very difficult or impossible to perform some task that was

unforeseen at the time of the building of that interface. Given

a powerful enough natural language interface, the user is given

the power of completeness of expression: he/she can specify any

task needed to be performed through English text (again, assuming

that such an interface is implementable). Another argument for

natural language interfaces is that there is virtually nothing to

learn about the interface for the user (assuming he/she knows
English).

Considering the above,

following conclusions:

it seems logical to make the

1) Both graphic-oriented and natural language interfaces

should reside on the space station (assuming powerful

enough natural language interfaces can be developed).

2) Graphic-oriented interfaces should be used in conjunction
with tasks that are well understood and bounded in terms

of previously foreseen needs and capabilities.

3) Tasks characterized by complexity and possible unknown

but essential requirements should have both graphic-

oriented and natural language interfaces (again assuming
their existence). The graphic-oriented interface would

be the interface normally used, with the natural language
interface used for any appropriate situation.

4) As the space station program develops further, more

natural language extensions to the existing graphic-
oriented interfaces should be developed to accomodate the

greater variety of people that will be participating in
the program.

Without a doubt, the space station will contain an amazing
amount of computational power, and harnessing that power and

making it usable should be a huge consideration. The complexity

of the entire operation and the fact that a large variety of
people must work together in the same environment should demand a

great amount of forethought about the man/machine interface.

REFERENCES

i. Minsky, M. The Society of Mind. Simon and Schuster, New York,
New York, 1985, p. 17.

2. Schneider, G.M, and Brue11, S.C. Advanced Prouramminu and

problem Solving in Pascal. John Wiley and Sons, New York, New
York, 1981, p. 52.

325




